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FOUR GENERAL CONTINUITY PROPERTIES,

FOR PAIRS OF FUNCTIONS, RELATIONS AND RELATORS,

WHOSE PARTICULAR CASES COULD BE INVESTIGATED

BY HUNDREDS OF MATHEMATICIANS

ÁRPÁD SZÁZ

Abstract. This is a research proposal for those who are interested in the

unification of several continuity-like properties of functions and relations in

the framework of relator spaces. For this, motivated by Galois connections,

we shall use a pair of relations instead of a single function or relation.

A family R of relations on one set X to another Y is called a relator on X

to Y . All reasonable generalizations of the usual topological structures (such

as proximities, closures, topologies, filters and convergences, for instance) can

be derived from relators. Therefore, they should not be studied separately.

From the various topological and algebraic stuctures (such as lower bounds,

minimum and infimum, for instance) derived from relators, by using Pataki

connections, we obtain several closure and modification operations for relators.

Each of them leads to four reasonable continuity or increasingness properties.

1. Relations and functions

A subset F of a product set X×Y is called a relation on X to Y . In particular,
a relation F on X to itself is simply called a relation on X. And, ∆X = {(x, x) :
x ∈ X } is called the identity relation of X.

If F is a relation on X to Y , then for any x ∈ X and A ⊆ X the sets
F (x) = {y ∈ Y : (x, y ) ∈ F } and F [A ] =

⋃
a∈A F (a) are called the images

or neighbourhoods of x and A under F , respectively.

If (x, y ) ∈ F , then instead of y ∈ F (x) , we may also write xF y . However,
instead of F [A ] , we cannot write F (A) . Namely, it may occur that, in addition
to A ⊆ X, we also have A ∈ X.

The sets DF = {x ∈ X : F (x) �= ∅ } and RF = F [X ] are called the domain
and range of F , respectively. If in particular DF = X, then we say that F is a
relation of X to Y , or that F is a total relation on X to Y .

In particular, a relation f on X to Y is called a function if for each x ∈ Df

there exists y ∈ Y such that f (x) = {y} . In this case, by identifying singletons
with their elements, we may simply write f(x) = y in place of f(x) = {y} .

Moreover, a function � of X to itself is called a unary operation on X. While, a
function ∗ of X 2 to X is called a binary operation on X. And, for any x, y ∈ X,
we usually write x� and x ∗ y instead of �(x) and ∗(x, y ).

If F is a relation on X to Y , then a function f of DF to Y is called a selection
function of F if f (x) ∈ F (x) for all x ∈ DR. Thus, by the Axiom of Choice
[19] , we can see that every relation is the union of its selection functions.
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For a relation F on X to Y , we may naturally define two set-valued functions
ϕ

F
of X to P (Y ) and ΦF of P (X ) to P (Y ) such that ϕ

F
(x) = F (x) for all

x ∈ X and ΦF (A) = F [A ] for all A ⊆ X.

Functions of X to P (Y ) can be naturally identified with relations on X to Y .
While, functions of P (X ) to P (Y ) are more powerful objects than relations on
X to Y . In [76, 81] , they were briefly called corelations on X to Y .

However, if U is a relation on P (X) to Y and V is a relation on P (X) to
P (Y ), then it is better to say that U is a super relation and V is a hyper relation
on X to Y [86, 41] . Thus, closures (proximities) [93] are super (hyper) relations.

Note that a super relation on X to Y is an arbitrary subset of P (X)× Y .
While, a corelation on X to Y is a particular subset of P (X)×P (Y ) . Thus, set
inclusion is a natural partial order for super relations, but not for corelations.

For a relation F on X to Y , the relation, F c = (X×Y ) \ F is called the
complement of F . Thus, it can be shown that F c (x) = F (x) c = Y \F (x) for all
x ∈ X, and F c [A ]c =

⋂
a∈A F (a) for all A ⊆ X.

Moreover, the relation F −1 = {(y , x) : (x, y ) ∈ F } is called the inverse of
F . Thus, it can be shown that F −1 [B ] = {x ∈ X : F (x) ∩ B �= ∅ } for all
B ⊆ Y , and in particular DF = F −1 [Y ] .

If F is a relation on X to Y , then we have F =
⋃

x∈X {x}×F (x). Therefore,
the values F (x), where x ∈ X, uniquely determine F . Thus, a relation F on X
to Y can also be naturally defined by specifying F (x) for all x ∈ X.

For instance, if G is a relation on Y to Z, then the composition relation G◦F
can be naturally defined such that (G ◦ F )(x) = G [F (x) ] for all x ∈ X. Thus,
it can be shown that (G ◦ F ) [A ] = G

[
F [A ]

]
for all A ⊆ X.

While, if G is a relation on Z to W , then the box product F �G can be defined
such that (F �G)(x, z ) = F (x)×G (z) for all x ∈ X and z ∈ Z . Thus, it can
be shown that (F �G)[A ] = G ◦A ◦ F −1 for all A ⊆ X×Z [74] .

Hence, by taking A = {(x, z )} , and A = ∆Y if Y = Z , one can at once see
that the box and composition products are actually equivalent tools. However, the
box product can be immediately defined for any family of relations.

2. Important relational properties

Now, a relation R on X, i. e. , a subset R of X 2 , may be briefly defined to be
reflexive and transitive if under the plausible notations R 0 = ∆X and R 2 = R◦R
we have R 0 ⊆ R and R 2 ⊆ R , respectively.

Moreover, R may be briefly defined to be symmetric and antisymmetric if
R−1 ⊆ R and R ∩ R−1 ⊆ R 0 , respectively. And, R may be briefly defined
to be total and directive if X 2 ⊆ R ∪R−1 and X 2 ⊆ R−1◦ R , respectively.

In addition to the above properties, several further remarkable relational prop-
erties were studied in [58] . For instance, a relation R on X was called quasi-anti-
symmetric if y ∈ R (x) and x ∈ R (y) imply R (x) = R (y) for all x, y ∈ X.

Much more importantly, a relation R on X was called non-mingled-valued if
R (x) ∩ R (y) �= ∅ implies R (x) = R (y) for all x, y ∈ X . Thus, it can be shown
that all equivalence and linear relations [89] are non-mingled-valued.

The latter two properties, by using the reasonable notations R− = R−1 ◦ R
and R◦ =

(
R−1◦ R c

)c
, can be reformulated in the forms R ∩ R−1 ⊆ R◦ and

R ◦R− ⊆ R , respectively. Note that if R is non-partial, then R ⊆ R ◦R− holds.

In the sequel, a reflexive and transitive (symmetric) relation may be called a
preorder (tolerance) relation. And, a symmetric (antisymmetric) preorder relation
may be called an equivalence (partial order) relation.
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According to general algebra, for any relation R on X, we may naturally define
Rn = R◦R n−1 if n ∈ N . Moreover, we may also define R ∞ =

⋃∞
n=0 Rn . Thus,

R ∞ is the smallest preorder relation containing R [17].

Now, in contrast to (F c )c = F and (F −1 )−1 = F , we have (R∞ )∞ = R∞ .
Moreover, analogously to (F c )−1 = (F −1 )c , we also have (R∞ )−1 = (R−1 )∞ .
Thus, in particular R−1 is also a preorder on X if R is a preorder on X.

For A ⊆ X, the Pervin relation RA = A2 ∪ (Ac×X ) is an important preorder
on X [38]. While, for a pseudo-metric d on X, the Weil surrounding B d

r =
{(x, y) ∈ X 2 : d (x, y) < r } , with r > 0 , is an important tolerance on X [95] .

Note that SA = RA ∩ R−1
A = RA ∩ RAc = A2 ∩

(
Ac)2 is already an equiva-

lence relation on X. And, more generally if A is a cover (partition) of X, then
SA =

⋃
A∈A A2 is a tolerance (equivalence) relation on X.

Now, as a straightforward generalization of the Pervin relation RA , for any
A ⊆ X and B ⊆ Y , we may also naturally consider the Hunsaker-Lindgren
relation R(A,B) = (A×B ) ∪ (Ac×Y ) [18] . ( See also [10, pp. 42 and 351] .)

However, it is more interesting to note that if A = (An

)∞
n=1

is an increasing

sequence in P (X) , then the Cantor relation RA = ∆X ∪
⋃∞

n=1

(
An × Ac

n

)
is

also an important preorder on X [34, 20] .

Note that if R is only reflexive relation on X and x ∈ X, then AR (x) =(
Rn(x)

)∞
n=1

is already an increasing sequence in P (X) . Thus, the preorder
relation RAR(x) may also be naturally investigated.

Moreover, for a real function ϕ of X and a quasi-pseudo-metric d on X [15] ,
the Brøndsted relation R (ϕ,d) = {(x, y ) ∈ X 2 : d (x, y ) ≤ ϕ (y) − ϕ (x)} is
also an important preorder on X [7] .

From this relation, by letting ϕ and d to be the zero functions, we can obtain
the specialization and preference relations Rd = { (x, y) ∈ X 2 : d (x, y ) = 0 }
and Rϕ = { (x, y ) ∈ X 2 : ϕ (x) ≤ ϕ (y)} , respectively. ( See [9] and [94] .)

3. Relator spaces

A family R of relations on one set X to another Y will be called a relator on
X to Y , and the ordered pair (X, Y )(R) =

(
(X, Y ) , R

)
will be called a relator

space. For the origins of this notion, see [48, 61] , and the references in [48] .

If in particular R is a relator on X to itself, then R is simply called a relator
on X. Thus, by identifying singletons with their elements, we may naturally write
X (R) instead of (X, X )(R) . Namely, (X, X ) = {{X } , {X, X }} = {{X }} .

Relator spaces of this simpler type are already substantial generalizations of
the various ordered sets [11, 43] and uniform spaces [93, 15] . However, they are
insufficient for some important purposes. ( See, [16] and [61, 74, 76, 91] .)

A relator R on X to Y , or the relator space (X, Y )(R) , is called simple if
R = {R} for some relation R on X to Y . Simple relator spaces (X, Y )(R) and
X (R) were called formal contexts and gosets in [16] and [78] , respectively.

Moreover, a relator R on X, or the relator space X(R) , may, for instance, be
naturally called reflexive if each member of R is reflexive on X. Thus, we may
also naturally speak of preorder, tolerance and equivalence relators.

For instance, for a family A of subsets of X, the family RA = {RA : A ∈ A} ,
where RA = A2∪ (Ac×X ) , is an important preorder relator on X . Such relators
were first explicitly used by Pervin [38] and Levine [28] .

While, for a family D of pseudo-metrics on X, the family RD = {B d
r : r >

0 , d ∈ D } , where B d
r = {(x, y) : d(x, y) < r} , is an important tolerance

relator on X. Such relators were already considered by Weil [95] .
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Moreover, if S is a family of covers (partitions) of X, then the family
RS = {SA : A ∈ S} , where SA =

⋃
A∈A A2 , is an important tolerance

(equivalence) relator on X. Equivalence relators were studied by Levine [27] .

If � is a unary operation for relations on X to Y , then for any relator R on
X to Y we may naturally define R� =

{
R� : R ∈ R

}
. However, this plausible

notation may cause confusions if � is a set-theoretic operation.

For instance, for any relator R on X to Y , we may naturally define the
elementwise complement Rc = {Rc : R ∈ R} , which may easily be confused
with the global complement Rc = P (X×Y ) \ R of R .

However, for instance, the practical notations R−1 = {R−1 : R ∈ R} , and
R∞ = {R∞ : R ∈ R} whenever R is only a relator on X, will certainly not
cause any confusion in the sequel.

For a relator R on X, we may also define R ∂ =
{
S ⊆ X 2 : S∞ ∈ R

}
.

Namely, for any two relators R and S on X, we have R∞ ⊆ S ⇐⇒ R ⊆ S ∂ .
That is, ∞ and ∂ form a Galois connection [11, p. 155] .

The operations ∞ and ∂ were introduced by Mala [29, 31] and Pataki [36, 37] ,
respectively. These two former PhD students of mine together with János Kurdics
[23, 25] , have made substantial developments in the theory of relators.

Moreover, if ∗ is a binary operation for relations, then for any two relators R
and S we may naturally define R ∗ S =

{
R ∗ S : R ∈ R , S ∈ S

}
. However,

this notation may again cause confusions if ∗ is a set-theoretic operation

Therefore, in the former papers, we rather wrote R∧S =
{
R∩S : R ∈ R , S ∈

S
}
. Moreover, for instance, we also wrote R�R−1 =

{
R ∩ R−1 : R ∈ R

}
.

Thus, R�R−1 is a symmetric relator such that R�R−1⊆ R ∧R−1 .

A function � of the family of all relators on X to Y is called a direct (indirect)
unary operation for relators if, for every relator R on X to Y , the value R � =
� (R) is a relator on X to Y (on Y to X).

More generally, a function F of the family of all relators on X to Y is called a
structure for relators if, for every relator R on X to Y , the value FR = F (R) is
in a power set depending only on X and Y .

Concerning structures and unary operations for relators, we can freely use some
basic terminology on set-to-set functions [81] . However, for closures and projec-
tions, we can now also use the terms refinements and modifications, respectively.

For instance, c and −1 are involution operations for relators. While, ∞ and
∂ are projection operations for relators. Moreover, the operation � = c , ∞ or ∂

is inversion compatible in the sense that
(
R �

)−1
=

(
R−1

)�
.

While, if for instance intR(B ) = {x ∈ X : ∃ R ∈ R : R (x) ⊆ B} for every
relator R on X to Y and B ⊆ Y , then the function F , defined by F (R) = intR,
is a union-preserving structure for relators.

The first basic problem in the theory of relators is that, for any union-preserving
structure F , we have to find an unary operation � for relators such that, for any
two relators R and S on X to Y we could have FS ⊆ FR ⇐⇒ S ⊆ R� .

By using Pataki connections [36, 84] , several closure operations can be derived
from union-preserving structures. However, more generally, one can find first the
Galois adjoint G of such a structure F , and then take �F = G ◦ F [66] .

By finding the Galois adjoint of the structure F , the second basic problem for
relators, that which structures can be derived from relators, can also be solved.
However, for this, some direct methods can also be well used [53, 68] .

Now, for an operation � for relators, a relator R on X to Y may be naturally
called �–fine if R� = R . And, for some structure F for relators, two relators
R and S on X to Y may be naturally called F–equivalent if FR = FS .
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Moreover, for a structure F for relators, a relator R on X to Y may, for
instance, be naturally called F–simple if FR = FR for some relation R on X to
Y . Thus, singleton relators have to be actually called properly simple.

4. Topological structures derived from relators

If R is a relator on X to Y , then for any A ⊆ X , B ⊆ Y and x ∈ X, y ∈ Y
we define :

(1) A ∈ IntR (B ) if R [A ] ⊆ B for some R ∈ R ;

(2) A ∈ ClR (B ) if R [A ] ∩ B �= ∅ for all R ∈ R ;

(3) x ∈ intR(B) if {x} ∈ IntR(B) ; (4) x ∈ σR(y) if x ∈ intR
(
{y}

)
;

(5) x ∈ clR(B) if {x} ∈ ClR(B) ; (6) x ∈ ρR(y) if x ∈ clR
(
{y}

)
;

(7) B ∈ ER if intR (B ) �= ∅ ; (8) B ∈ DR if clR (B ) = X .

Moreover, if in particular R is a relator on X , then for any A ⊆ X we also
define :

(9) A ∈ τR if A ∈ IntR (A) , (10) A ∈ τ-
R

if Ac /∈ ClR (A) ,

(11) A ∈ TR if A ⊆ intR (A) , (12) A ∈ FR if clR (A) ⊆ A ;

(13) A ∈ NR if clR (A) /∈ ER ; (14) A ∈ MR if intR (A) ∈ DR .

The relations IntR , intR and σR are called the proximal, topological and
infinitesimal interiors generated by R , respectively. While, the members of the
families, τR , TR, ER and NR are called the proximally open, topologically open,
fat and rare (nowhere dense) subsets of the relator space X (R) , respectively.

The origins of the relations ClR and IntR go back to Efremović’s proximity
δ [13] and Smirnov’s strong inclusion � [46] , respectively. The families τR and
ER were first explicitly used by the present author [53] . In particular, the practical
notation τ-R has been suggested by János Kurdics.

By the above definitions, for any relator R on X to Y and B ⊆ Y , we have

ClR(B ) = P(X) \ IntR
(
B c

)
; clR(B ) = X \ intR

(
B c ) ;

ClR−1 = Cl−1
R ; IntR−1 = CY ◦ Int−1

R ◦ CX ;

DR =
{
D ⊆ Y : D c /∈ ER

}
=

{
D ⊆ Y : ∀ E ∈ ER : E ∩D �= ∅

}
;

where CX(A) = X \A for all A ⊆ X.

Moreover, if in particular R is a relator on X, then we also have

τ-R = τR−1 ; τ-R =
{
A ⊆ X : Ac ∈ τR

}
;

FR =
{
A ⊆ X : Ac ∈ TR

}
; MR =

{
A ⊆ X : Ac ∈ NR

}
.

Thus, the proximal closures and proximally open sets are usually more convenient
tools, than the topological closures (proximal interiors) and topologically open sets,
respectively.

Moreover, the fat sets are frequently also more convenient tools than the topolo-
gically open ones. For instance, if ≤ is a relation on X, then T≤ and E≤ are just
the families of all ascending and residual subsets of the goset X (≤ ) , respectively.

Moreover, if in particular X = R and R is a relation on X such that

R (x) = {x− 1 } ∪ [x , +∞ [

for all x ∈ X, then TR = { ∅ , X } , but ER is quite large family.
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However, the importance of the fat and dense sets lies manly in the fact that if
R is a relator on X to Y , and ϕ and ψ are functions of a relator space Γ(U )
to X and Y , respectively, then by using the function (ϕ, ψ ) , defined by

(ϕ, ψ )(γ) =
(
ϕ (γ) , ψ (γ)

)

for all γ ∈ Γ , we may also define

(15) ϕ ∈ LimR (ψ ) if (ϕ, ψ )−1 [R ] ∈ EU for all R ∈ R ;

(16) ϕ ∈ AdhR (ψ ) if (ϕ, ψ )−1 [R ] ∈ DU for all R ∈ R .

Now, for any x ∈ X, we may also naturally define :

(17) x ∈ limR (ψ ) if x
Γ
∈ LimR(ψ ) ; (18) x ∈ adhR(Ψ) if x

Γ
∈ AdhR(ψ ) ;

where xΓ
is a function of Γ to X such that x

Γ
(γ) = x for all γ ∈ Γ .

The big limit relation LimR , suggested by Efremović and Švarc [14] , is, in
general, a much stronger tool in the relator space (X, Y )(R) than the big closure
and interior relations ClR and IntR suggested by Efremović [13] and Smirnov [46].

Namely, it can be shown that, for any A ⊆ X and B ⊆ Y , we have A ∈ ClR(B )
if and only if there exist a preordered set Γ(≤) and functions ϕ and ψ of Γ to
A and B , respectively, such that ϕ ∈ LimR(ψ )

(
ϕ ∈ AdhR(ψ )

)
.

5. Algebraic structures derived from relators

If R is a relator on X to Y , then according to [63] , for any A ⊆ X, B ⊆ Y ,
x ∈ X and y ∈ Y we may also naturally define :

(1) A ∈ LbR(B) and B ∈ UbR (A) if A×B ⊆ R for some R ∈ R ;

(2) x ∈ lbR(B) if {x} ∈ LbR(B) ; (3) y ∈ ubR(A) if {y} ∈ UbR(A) ;

(4) B ∈ LR if lbR(B) �= ∅ ; (5) A ∈ UR if ubR(A) �= ∅ .

Moreover, in particular R is a relator on X, then for any A ⊆ X we may also
naturally define :

(6) minR(A) = A ∩ lbR(A) ; (7) maxR(A) = A ∩ ubR(A) ;

(8) MinR(A) = P(A) ∩ LbR(A) ; (9) MaxR(A) = P (A) ∩UbR(A) ;

(10) infR(A) = maxR
(
lbR(A)

)
; (11) supR(A) = minR

(
ubR(A)

)
;

(12) InfR(A) = MaxR
[
LbR(A)

]
; (13) SupR(A) = MinR

[
UbR(A)

]
;

(14) A ∈ �R if A ∈ LbR(A) ; (15) A ∈ uR if A ∈ UbR(A) ;

(16) A ∈ LR if A ⊆ lbR(A) ; (17) A ∈ UR if A ⊆ ubR(A) .

By the above definitions, for any relator R on X to Y , we have

UbR = LbR−1 = Lb−1
R ; ubR = lbR−1 ; UR = LR−1 .

Moreover, if in particular R is a relator on X, then we also have

�R ⊆ LR ∩ UR ; uR = �
R−1 = �R ; UR = LR−1 ;

A ∈ �R ⇐⇒ A ∈ MinR(A) ⇐⇒ A ∈ InfR(A) ;

�R = MinR
[
P(X)

]
; LR = minR [P (X) ] .

However, the above algebraic structures are not independent of the former topo-
logical ones. Namely, if R is a relation on X to Y , then for any A ⊆ X and
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B ⊆ Y we have

A×B ⊆ R ⇐⇒ ∀ a ∈ A : B ⊆ R (a) ⇐⇒ ∀ a ∈ A : R (a) c ⊆ B c

⇐⇒ ∀ a ∈ A : R c(a) ⊆ B c ⇐⇒ R c [A ] ⊆ B c.

Therefore, if R is a relator on X to Y , then by the corresponding definitions, for
any A ⊆ X and B ⊆ Y , we also have

A ∈ LbR (B) ⇐⇒ A ∈ IntRc (B c ) ⇐⇒ A ∈
(
IntRc◦ CY

)
(B) .

Hence, we can already infer that

LbR = IntRc◦ CY ; lbR = intRc◦ CY ; IntR = LbRc◦ CY ; intR = lbRc◦ CY .

Therefore, in contrast to a common belief, some algebraic and topological
structures are just as closely related to each other by the above equalities as the
exponential and the trigonometric functions are by the celebrated Euler formulas
[47, p. 227 ] .

6. Closure and projection operations for relators

From the various structures derived from relators, by using Pataki connections
[36, 84] , we can derive several closure operations for relators.

However, the first three of the following operations were already considered by
Bourbaki [6, p. 169] , Kenyon [22] and H. Nakano and K. Nakano [32] .

For instance, for any relator R on X to Y , the relators

R ∗ =
{
S ⊆ X×Y : ∃ R ∈ R : R ⊆ S

}
;

R# =
{
S ⊆ X×Y : ∀ A ⊆ X : ∃ R ∈ R : R [A ] ⊆ S [A ]

}
;

R∧ =
{
S ⊆ X×Y : ∀ x ∈ X : ∃ R ∈ R : R (x) ⊆ S (x)

}
;

R� =
{
S ⊆ X×Y : ∀ x ∈ X : ∃ u ∈ X : ∃ R ∈ R : R (u) ⊆ S (x)

}

are called the uniform, proximal, topological, and paratopological closures (refine-
ments) of the relator R , respectively.

Thus, we evidently have R ⊆ R ∗ ⊆ R# ⊆ R∧ ⊆ R� for any relator R on X
to Y . Moreover, if in particular R is a relator on X, then we can easily prove
that R∞ ⊆ R ∗∞ ⊆ R∞∗ ⊆ R ∗ .

However, it is now more important to note that, because of the corresponding
definitions in Section 4, we also have

R# =
{
S ⊆ X×Y : ∀ A ⊆ X : A ∈ IntR

(
S [A ]

) }
,

R∧ =
{
S ⊆ X×Y : ∀ x ∈ X : x ∈ intR

(
S(x)

)}
,

R� =
{
S ⊆ X×Y : ∀ x ∈ X : S(x) ∈ ER

}
.

Morover, by using a Pataki connections [36, 84] , we can, for instance, prove the
following theorems and their corollaries in a unified way.

Theorem 6.1. # , ∧ and � are closure operations for relators such that, for any
two relators R and S on X to Y , we have

(1) S ⊆ R# ⇐⇒ S # ⊆ R# ⇐⇒ IntS ⊆ IntR ⇐⇒ ClR ⊆ ClS ,

(2) S ⊆ R∧ ⇐⇒ S ∧ ⊆ R∧ ⇐⇒ intS ⊆ intR ⇐⇒ clR ⊆ clS ,

(3) S ⊆ R� ⇐⇒ S� ⊆ R� ⇐⇒ ES ⊆ ER ⇐⇒ DR ⊆ DS .

Corollary 6.2. For any relator R on X to Y ,
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(1) S = R# is the largest relator on X to Y such that IntS = IntR , or
equivalently ClS = ClR ;

(2) S = R∧ is the largest relator on X to Y such that intS = intR , or
equivalently clS = clR ;

(3) S = R� is the largest relator on X to Y such that ES = ER , or equivalently
DS = DR .

Theorem 6.3. # ∂ is a closure operation for relators such that for any two relators
R and S on X, we have

S ⊆ R# ∂ ⇐⇒ S # ∂ ⊆ R# ∂ ⇐⇒ τS ⊆ τR ⇐⇒ τ-S ⊆ τ-R .

Corollary 6.4. For any relator R on X, S = R# ∂ is the largest relator on X
such that τS = τR or equivalently τ-S = τ-R .

Remark 6.5. ∧ ∂ is only a preclosure operation for relators. Moreover, if R is
a relator on X, then in general there does not exist a largest relator S such that
TS = TR . ( See Mala [29, Example 5.3] and Pataki [36, Example 7.2] .)

In the light of this and other disadvantages of the structure T , it is rather
curious that most of the works in topology and analysis are based on open sets
suggested by Tietze [92] and standardized by Bourbaki [6] and Kelley [21] .

Moreover, it also a striking fact that, despite the results of Pervin [38] , Fletcher
and Lindgren [15] and the present author [68] , generalized topologies and minimal
structures are still intensively investigated by a great number of mathematicians.

Concerning the structures T and F , instead of an analogue of Theorem 6.3,
we can only prove the following generalizations of the results of Mala [29, 31] .

Theorem 6.6. ∧∞ is a modification operation for relators such that, for any two
nonvoid relators R and S on X, we have

S ∧∞ ⊆ R∧ ⇐⇒ S ∧∞ ⊆ R∧∞ ⇐⇒ TS ⊆ TR ⇐⇒ FS ⊆ FR .

Corollary 6.7. For any nonvoid relator R on X, S = R∧∞ is the largest
preorder relator on X such that TS = TR or equivalently FS ⊆ FR .

Remark 6.8. Quite similar theorems can be proved concerning the modification
operations #∞ and ∞# .

Their advantage over the closure operation # ∂ lies mainly in the fact that,
in contrast to the letter one, they are still stable in the sense that they leave the
relator {X 2} fixed for any set X.

Finally, we note that, by using the notations

#© = c# c and ∧© = c ∧ c

we can also prove the following analogues of Theorem 6.1 and its corollary.

Theorem 6.9. #© and ∧© are closure operations for relators such that, for any
two relators R and S on X to Y , we have

(1) S ⊆ R #© ⇐⇒ S #© ⊆ R #© ⇐⇒ LbS ⊆ LbR ,

(2) S ⊆ R ∧© ⇐⇒ S ∧© ⊆ R ∧© ⇐⇒ lbS ⊆ lbR .

Corollary 6.10. For any relator R on X to Y ,

(1) S = R #© is the largest relator on X to Y such that LbS = LbR ;

(2) S = R ∧© is the largest relator on X to Y such that lbS = lbR .

Remark 6.11. In contrast to the operation ∗ and # , the operations ∧ and
� are are not inversions compatible [52, 30] . Therefore, we shall also need the
notations

∨ = ∧ − 1 and � =� −1 .
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Moreover, these operations are only left composition compatible in the sense
that, under the notation � = ∧ or � , we have

(
S ◦ R

)�
=

(
S ◦ R �

)�

for any two relators R on X to Y and S on Y to Z .

7. Relational characterizations of increasing functions

To motivate our forthcoming, unifying definition for continuity properties, we
shall start with some simple observations on increasing functions.

Definition 7.1. Assume that

(a) X (R) and Y (S) are gosets ; (b) f is a function of X to Y .

Then, the function f is called increasing if for any u, v ∈ X

uRv =⇒ f (u)S f (v) .

Remark 7.2. Increasing functions have several useful characterizations in terms
of the relations ub and max .

For instance, we can easily see that f is increasing if and only f [ ubR (A) ] ⊆
ubS

(
f [A ]

)
for all A ⊆ X [78] .

However, it is now more important to note that the following two theorems are
also true.

Theorem 7.3. The following assertions are equivalent :

(1) f is increasing ;

(2) (u, v ) ∈ R =⇒
(
f (u) , f (v)

)
∈ S

(3) v ∈ R (u) =⇒ f (v) ∈ S
(
f (u)

)
for all u ∈ X.

Theorem 7.4. The following assertions are equivalent :

(1) f is increasing ;

(2) f ◦R ⊆ S ◦ f , (3) R ⊆ f −1 ◦ S ◦ f ;

(4) f ◦R ◦ f −1 ⊆ S , (5) R ◦ f −1⊆ f −1◦ S .

Proof. By the corresponding definitions, it is clear that, for any u ∈ X, the
following assertions are equivalent :

v ∈ R(u) =⇒ f(v) ∈ S
(
f(u)

)
;

f [R(u) ] ⊆ S
(
f(u)

)
; (f ◦R)(u) ⊆ (S ◦ f )(u) .

Therefore, by Theorem 7.3, assertions (1) and (2) are also equivalent.

The proofs of the remaining equivalences depend on the increasingness and
associativity of composition, and the inclusions

∆X ⊆ f −1◦ f and f ◦ f −1 ⊆ ∆Y ,

where ∆X and ∆Y are the identity functions of X and Y , respectively.

Remark 7.5. The latter inclusions indicate that assertions (2)–(5) need not be
equivalent for an arbitrary relation f on X(R) to Y (S ) .

Therefore, they can be naturally used to define different increasingness properties
of a relation F on X(R) to Y (S ) .
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Remark 7.6. Having in mind the associated set-valued function, a relation F on
the goset X (R) to a set Y may be naturally called increasing if uR v implies
F (u) ⊆ F (v) for all u, v ∈ X.

Thus, it can be easily shown that the relation F is increasing if and only if its
inverse F −1 is ascending-valued in the sense that F −1(y) is an ascending subset
of X (R) for all y ∈ Y .

By using the corresponding definitions, the latter statement can be reformulated
in the form that R [ F −1(y) ] ⊆ F −1(y) for all y ∈ Y . That is, R ◦ F −1 ⊆ F −1 ,
and thus R ◦ F −1 ⊆ F −1◦∆Y .

Remark 7.7. In addition to the above inclusion-increasingness, a relation F on
X (R) to Y (S) may be naturally called order-increasing if u ∈ lbR (v) implies
F (u) ∈ LbS

(
F (v)

)
for all v ∈ X.

That is, (u, v ) ∈ R implies F (u)×F (v) ⊆ S . Thus, it can be shown that F
is order-increasing if and only if F ◦ R ◦ F −1 ⊆ S , or equivalently F [R (u)] ⊆
ubS

(
F (u)

)
for all u ∈ X.

Now, as an immediate consequence of Theorem 7.4 and a basic theorem on box
products, we can also state

Corollary 7.8. The following assertions are equivalent :

(1) f is increasing ;

(2) (f � f ) [R ] ⊆ S ; (3)
(
f �R

)
[ ∆X ] ⊆ (S � f )−1 [ ∆Y ] ;

(4) R ⊆ (f � f )−1 [S ] ; (5)
(
R−1 � f

)
[ ∆X ] ⊆

(
f −1 � S

)
[ ∆Y ] .

However, it is now more important to note that, by using our former operations
on relators, Theorem 7.4 can be reformulated in the following instructive form.

Theorem 7.9. Under the notations

F = {f } , R = {R} , S = {S}
the following assertions are equivalent :

(1) f is increasing ;

(2)
(
S ∗◦ F ∗)∗⊆ (

F ∗◦ R ∗)∗, (3)
((

F ∗)−1◦ S ∗◦ F ∗
)∗

⊆ R ∗∗,

(4) S ∗∗⊆
(
F ∗◦ R ∗ ◦

(
F ∗)−1

)∗
, (5)

((
F ∗)−1◦ S ∗

)∗
⊆
(
R ∗◦

(
F ∗)−1

)∗
.

Proof. The check the equivalences of the assertions (2)–(5) of this theorem to
assertions (2)–(5) of Theorem 7.3, it is convenient to use that ∗ is an inversion
and composition compatible closure operation for relators. Thus,

(a)
(
R ∗)−1

=
(
R−1

)∗
for any relator R on X to Y ;

(b) R ⊆ S ∗ ⇐⇒ R ∗ ⊆ S ∗ for any relators R and S on X to Y ;

(c)
(
S ◦ R

)∗
=

(
S ∗◦ R∗)∗ for any relators R on X to Y and S on Y to Z .

Remark 7.10. Note that in Theorems 7.3, 7.4 and 7.9, R and S may be thought
of not only as certain order relations ≤X and ≤Y , but also as some surroundings
B dX

δ and B dY
ε .

Therefore, instead of the term ”increasing”, we can equally well use the term
”continous”. Namely, if R = B dX

δ and S = B dY
ε , then assertion (2) of Theorem

7.3 means only that dX(u, v ) < δ implies dY
(
f (u), f (v)

)
< ε .
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8. Four basic continuity properties for pairs of relators

Now, by pexiderizing the inclusions (2)–(5) in Theorem 7.9, we may naturally
introduce the following general definition whose origins go back to [48, 39, 61, 91] .

Definition 8.1. Assume that

(a) (X, Y )(R) and (Z , W )(S ) are relator spaces ;

(b) F is a relator on X to Z and G be a relator on Y to W ;

(c) � =
(
� i

)6
i=1

is a family of direct unary operations for relators .

Then, we say that the pair (F , G ) is, with respect to the relators R and S ,

(1) upper �–semicontinuous if
(
S�1 ◦ F �2

)�3

⊆
(
G�4 ◦ R�5

)�6

,

(2) mildly �–continuous if
((

G�1

)−1

◦ S�2 ◦ F �3

)�4

⊆ R�5�6 ,

(3) vaguely �–continuous if

S�1�2 ⊆
(
G �3 ◦ R�4 ◦

(
F�5

)−1
)�6

,

(4) lower �–semicontinuous if
((

G�1

)−1

◦ S�2

)�3

⊆
(
R�4 ◦

(
F �5

)−1
)�6

.

Remark 8.2. To keep in mind the above assumptions, for any R ∈ R , S ∈ S ,
F ∈ F and G ∈ G , one can use the diagram :

X
F−−−−→ Z

R

�
�S

Y
G−−−−→ W

Remark 8.3. Now, for any F ∈ F and G ∈ G , the pair (F , G) may, for
instance, be naturally called upper �–semicontinuous, if the pair

(
{F } , {G}

)
is

upper �–semicontinuous. That is,

(
S�1 ◦ {F }�2

)�3

⊆
(
{G}�4 ◦ R�5

)�6

.

Unfortunately, this condition may greatly differ from the more natural requi-

rement that
(
S �1 ◦ F

)�3 ⊆
(
G ◦ R�5

)�6
which should also be given an

appropriate name.

In this respect, it is worth noticing that, for instance, we have

{F }# = {F }∧ = {F }∗ and {F }� =
{
F ◦XX

}∗

for all F ∈ F .

Remark 8.4. Thus, the the pair (F , G) may, for instance, be naturally called
selectionally upper �–semicontinuous if for any selection functions f of F and g
of G the pair (f , g ) is upper �–semicontinuous.
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Moreover, the pair (F , G ) may, for instance, be naturally called elementwise
upper �–semicontinuous if for any F ∈ F and G ∈ G , the pair (F , G) is upper
�–semicontinuous. This may greatly differ from property (1).

Remark 8.5. If in particular � is a direct unary operation for relators, then the
pair (F , G ) may, for instance, be also naturally called upper �–semicontinuous

if it is upper
(
�
)6
i=1

–semicontinuous. That is,
(
S � ◦ F �

)�
⊆

(
G � ◦ R�

)�
.

Remark 8.6. Thus, the pair (F , G ) may, for instance, be naturally called
properly upper semicontinuous if it is upper �–semicontinuous with � being the
identity operation for relators. That is, S ◦ F ⊆ G ◦ R .

Moreover, the pair (F , G ) may, for instance, be also naturally called
uniformly, proximally, topologically and paratopologically upper semicontinuous if
it is �–semicontinuous with � = ∗ , # , ∧ and � , respectively.

Thus, by using the operations �∞ and � ∂ instead of � , we can quite
similarly speak of the corresponding quasi upper semicountinuity and pseudo upper
semicontinuity properties of (F , G ) .

Remark 8.7. Finally, we note that if in particular X = Y and Z = W , then
the relator F and a relation F ∈ F may, for instance, be naturally called upper
�–semicontinuous if the pairs (F , F ) and (F , F ) are upper �–semicontinuous,
respectively.

9. Galois and Pataki connections

By our former papers [69, 77] , we may naturally use the following

Definition 9.1. Assume that

(a) X (R) and Y (S) are gosets ;

(b) ϕ is a function of X to itself ;

(c) f is a function of X to Y and g is a function of Y to X .

Then, we say that f is increasingly right

(1) g–seminormal if for all x ∈ X and y ∈ Y

f (x)S y =⇒ xR g (y) .

(2) ϕ–semiregular if for all u, v ∈ X

f(u)S f(v) =⇒ uRϕ(v) .

Remark 9.2. If property (1) holds, then we may also say that f and g form an
increasing right Galois semiconnection between X (R) and Y (S ) .

On the other hand, if property (2) holds, then we may also say that f and ϕ
form an increasing right Pataki semiconnection between X (R) and Y (S ) .

The corresponding increasing left seminormality and semiregularity properties
of f can be defined by reversing the implications in properties (1) and (2).

Moreover, the function f may, for instance, be naturally called increasingly
g–normal if it is increasingly left and right g–seminormal.

By using the above definitions, we can easily prove the following three theorems.

Theorem 9.3. If f is an increasingly left g–seminormal function of X (R) to
Y (S), then g is an increasingly right f–seminormal function of Y (S−1) to
X (R−1) .
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Proof. For any y ∈ Y and x ∈ X

g (y)R−1 x =⇒ x R g (y) =⇒ f (x)S y =⇒ y S−1 f (x) .

Theorem 9.4. If f is increasingly right g–seminormal and ϕ = g ◦ f , then f
is increasingly right ϕ–semiregular.

Theorem 9.5. If f is increasingly right ϕ–semiregular, f is onto Y , and
ϕ = g ◦ f , then f is increasingly right g–seminormal.

Proof. Suppose that x ∈ X and y ∈ Y . Then, since Y = f [X ] , there exists
v ∈ X such that y = f(v) . Thus, we can easily see that

f (x)S y =⇒ f (x)S f (v) =⇒ x R ϕ (v)

=⇒ x R (g ◦ f )(v) =⇒ x R g
(
f (v)

)
=⇒ x R g (y) .

Remark 9.6. By Theorem 9.4, it is clear that several properties of the increasingly
normal functions can be immediately derived from those of the increasingly regular
ones. Therefore, the latter ones have to studied before the former ones.

While, from Theorem 9.5, we can see that the increasing regular functions are
still less general objects than the increasingly normal ones. Actually, they are
strictly between closure operations and increasingly normal functions.

Namely, concerning them we can also prove the following

Theorem 9.7. If R is a preorder, then the following assertions are equivalent :

(1) ϕ is a closure operation ; (2) ϕ is increasingly ϕ–regular ;

(3) there exists an increasingly ϕ–regular function h of X (R) to a proset Z (T ) .

Hence, by using the induced order (preference) relation Ordf , defined such that

Ordf (u) =
{
v ∈ X : f (u)S f (v)

}

for all u ∈ X, we can easily derive the following

Corollary 9.8. If R and S are preorders, then the following assertions are equi-
valent :

(1) f is increasingly ϕ–regular ;

(2) ϕ is a closure operation and Ordϕ = Ordf .

Finally, we note that, concerning normal functions, the following three theorems
are also true.

Theorem 9.9. If R is a preorder, then the following assertions are equivalent :

(1) ϕ is an involution operation; (2) ϕ is ϕ–normal .

Theorem 9.10. If R and S are preorders, then the following assertions are equi-
valent :

(1) f is g–normal ;

(2) f and g are increasing, g ◦ f is extensive and f ◦ g is intensive.

Remark 9.11. This theorem shows that the recent definition of Galois connections
[11, p. 155] , suggested by Schmidt [45, p. 209] , is equivalent to the old one given
by Ore [33] .

Theorem 9.12. If R and S are preorders, then the following assertions are equi-
valent :

(1) f is g–normal ;

(2) f is increasing and g (y) ∈ max
(
Intf (y)

)
for all y ∈ Y .
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Remark 9.13. Here, the induced interior relation Intf is defined such that

Intf (y) =
{
x ∈ X : f (x)S y

}

for all y ∈ Y . Thus, we have Ordf =
(
Intf ◦f

)−1
.

Moreover, we can also easily show that f is increasingly g–normal if and only
if Intf (y) = lb

(
g(y)

)
for all y ∈ Y , even if R and S are not suppose to have any

particular property.

10. Relational characterizations of increasingly right seminormal
functions

By using Definition 9.1, analogously to Theorem 7.4, we can also prove

Theorem 10.1. The following assertions are equivalent :

(1) f is increasingly right g–seminormal ;

(2) S ◦ f ⊆ g−1◦R ; (3) g ◦ S ◦ f ⊆ R .

Proof. For any x ∈ X and y ∈ Y , the following assertions are equivalent :

f(x)S y =⇒ xR g(y) ,

y ∈ S
(
f(x)

)
=⇒ g(y) ∈ R (x) ,

y ∈ S
(
f(x)

)
=⇒ y ∈ g−1 [R(x) ] ,

S
(
f(x)

)
⊆ g−1 [R(x) ](

S ◦ f
)
(x) ⊆

(
g−1◦R

)
(x) .

Hence, by Definition 9.1, we can see that assertions (1) and (2) are equivalent.

Moreover, by using some basic properties of composition, we can see that

(2) =⇒ g ◦ S ◦ f ⊆ g ◦ g−1◦R =⇒ g ◦ S ◦ f ⊆ ∆X ◦R =⇒ (3)

and

(3) =⇒ g−1◦ g ◦ S ◦ f ⊆ g−1◦R =⇒ ∆Y ◦ S ◦ f ⊆ g−1◦R =⇒ (2) .

Therefore, assertions (2) and (3) are also equivalent.

From this theorem, by using some basic theorems on the box product [74] , we
can derive the following

Corollary 10.2. The following assertions are equivalent :

(1) f is increasingly right g–seminormal ;

(2)
(
f −1 � S

)
[ ∆Y ] ⊆

(
R−1 � g−1

)
[ ∆X ] ; (3)

(
f −1 � g

)
[S ] ⊆ R .

Remark 10.3. From Theorem 10.1, by using the operation ∗ , we can easily derive
an analogue of Theorem 7.9.

However, it is now more important to note that, by using Theorem 10.1 and the
operation � = c ∗ c , we can also prove the following

Theorem 10.4. Under the notations

F = {f } , G = {g} , R = {R} , S = {S} ,
the following assertions are equivalent :

(1) f is increasingly right g–normal ;

(2)
(
S� ◦ F �

)� ⊆
((

G �
)−1◦ R�

)�
; (3)

(
G� ◦ S� ◦ F�

)� ⊆ R�� .
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Remark 10.5. To check this, note that for any relator R and relation S on X
to Y we have

S ∈ R� ⇐⇒ S ∈ Rc∗c ⇐⇒ S c ∈ Rc∗ ⇐⇒ ∃ U ∈ Rc : U ⊆ S c

⇐⇒ ∃R ∈ R : Rc ⊆ S c ⇐⇒ ∃R ∈ R : S ⊆ R .

Therefore,

R� =
{
S ⊆ X×Y : ∃ R ∈ R : S ⊆ R

}
=

⋃
R∈R P (R) .

11. Relational characterizations of increasingly right semiregular
functions

By using Definition 9.1, analogously to Theorem 10.1, we can also prove

Theorem 11.1. The following assertions are equivalent :

(1) f is increasingly right ϕ–semiregular ;

(2) f −1◦ S ◦ f ⊆ ϕ−1◦R ; (3) ϕ ◦ f −1◦ S ◦ f ⊆ R .

Proof. For any u, v ∈ X, the following assertions are equivalent :

f(u)S f(v) =⇒ uRϕ(v) ,

f(v) ∈ S
(
f(u)

)
=⇒ ϕ(v) ∈ R(u) ,

v ∈ f −1
[
S
(
f(u)

) ]
=⇒ v ∈ ϕ−1 [R(u) ] ,

f −1
[
S
(
f(u)

) ]
⊆ ϕ−1 [R(u) ](

f −1◦ S ◦ f
)
(u) ⊆

(
ϕ−1◦R

)
(u) .

Therefore, by Definition 9.1, assertions (1) and (2) are equivalent.

Moreover, by using some basic properties of composition, we can see that

(2) =⇒ ϕ ◦ f −1◦ S ◦ f ⊆ ϕ ◦ ϕ−1◦R =⇒ ϕ ◦ f −1◦ S ◦ f ⊆ ∆X ◦R =⇒ (3)

and

(3) =⇒ ϕ−1◦ ϕ ◦ f −1◦ S ◦ f ⊆ ϕ−1◦R =⇒ ∆X ◦ f −1◦ S ◦ f ⊆ ϕ−1◦R =⇒ (2).

Therefore, assertions (2) and (3) are also equivalent.

From this theorem, by using some basic theorems on the box product [74] , we
can derive the following

Corollary 11.2. The following assertions are equivalent :

(1) f is increasingly right ϕ–semiregular ;

(2)
(
f −1� f −1

)
[S ] ⊆

(
R−1� ϕ−1

)
[ ∆X ] ; (3) ϕ◦

(
f −1� f −1

)
[S ] ⊆ R .

Remark 11.3. From Theorem 11.1, by using the operation ∗ , we can easily derive
an analogue of Theorem 7.9

However, again it is more important to note that, by using Theorem 11.1 and
the operation � = c ∗ c , we can also prove the following

Theorem 11.4. Under the notations

F = {f } , Φ = {ϕ} , R = {R} S = {S} ,
the following assertions are equivalent :

(1) f is increasingly right ϕ–regular ;

(2)
((

F�
)−1◦ S�◦ F�

)�
⊆

((
Φ�

)−1◦ R�
)�

.
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12. Some increasing right seminormality and semiregularity
properties for pairs of relators

Now, analogously to Definition 8.1, we may also naturally introduce the following

Definition 12.1. Assume that

(a) (X, Y )(R) and (Z , W )(S ) are relator spaces ;

(b) F is a relator on X to Z and G be a relator on Y to W ;

(c) � =
(
� i

)6
i=1

is a family of direct unary operations for relators .

Then, we say that the relator F is, with respect to the relators R and S ,

(1) increasingly upper right �–G–seminormal if
(
S�1 ◦ F �2

)�3

⊆
((

G�4

)−1

◦ R�5

)�6

,

(2) increasingly mildly right �–G–seminormal if(
G�1 ◦ S�2 ◦ F �3

)�4

⊆ R�5�6 ,

(3) increasingly vaguely right �–G–seminormal if

S�1�2 ⊆
((

G �3

)−1

◦ R�4 ◦
(
F�5

)−1
)�6

,

(4) increasingly lower right �–G–seminormal if
(
G�1 ◦ S�2

)�3

⊆
(
R�4 ◦

(
F �5

)−1
)�6

.

Remark 12.2. To keep in mind the above assumptions, for any R ∈ R , S ∈ S ,
F ∈ F and G ∈ G , one can use the diagram :

X
F−−−−→ Z

R

�
�S

Y
G←−−−− W

Thus, for instance, we can easily establish the following

Theorem 12.3. If in particular the operation �4 is inversion compatible, then
the following assertions are equivalent :

(1)
(
F , G−1

)
is upper �–continuous ;

(2) F is increasingly upper right �–G–normal .

Now, in contrast to Definition 12.1, we can only introduce the following

Definition 12.4. Assume that

(a) (X, Y )(R) and Z (S ) are relator spaces;

(b) F is a relator on X to Z and Φ is a relator on X to Y ;

(c) � = (� i )
7
i=1 is a family of direct unary operations for relators .

Then, we say that the relator F is increasingly right �–Φ–semiregular, with
respect to the relators R and S , if

((
F�1

)−1

◦ S�2 ◦ F �3

)�4

⊆
((

Φ�5

)−1

◦ R�6

)�7

.
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Remark 12.5. To keep in mind the above assumptions, for any R ∈ R , S ∈ S ,
F ∈ F and Φ ∈ Φ , one can use the diagram :

X
F−−−−→ Z

Φ

�R

�S

Y Z

Thus, for instance, we can easily establish the following

Theorem 12.6. If in particular �5 = �6 = �7 is an inversion and composition

compatible closure operation for relators and ♦ =
(
� i

)6
i=1

, then the following
assertions are equivalent :

(1) F is mildly ♦–continuous with respect to the relators Φ ◦ R and S ;

(2) F is increasingly right ♦–Φ–semiregular with respect to the relators R
and S .
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[53] Száz, Á., Structures derivable from relators, Singularité 3(1992), 14–30.
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[55] Száz, Á., Refinements of relators, Tech. Rep., Inst. Math., Univ. Debrecen 76(1993), 19 pp.
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[60] Száz, Á., An extension of Kelley’s closed relation theorem to relator spaces, Filomat
14 (2000), 49–71.
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